CHOSERICERCAPUBBLICAZIONITHE MOLECULAR WEIGHT DEPENDENCE OF THERMOELECTRIC PROPERTIES OF POLY (3-HEXYLTHIOPHENE)

THE MOLECULAR WEIGHT DEPENDENCE OF THERMOELECTRIC PROPERTIES OF POLY (3-HEXYLTHIOPHENE)

organic semiconductors

ABSTRACT

Organic materials have been found to be promising candidates for low-temperature thermoelectric applications. In particular, poly (3-hexylthiophene) (P3HT) has been attracting great interest due to its desirable intrinsic properties, such as excellent solution processability, chemical and thermal stability, and high field-effect mobility. However, its poor electrical conductivity has limited its application as a thermoelectric material. It is therefore important to improve the electrical conductivity of P3HT layers. In this work, we studied how molecular weight (MW) influences the thermoelectric properties of P3HT films. The films were doped with lithium bis(trifluoromethane sulfonyl) imide salt (LiTFSI) and 4-tert butylpyridine (TBP). Various P3HT layers with different MWs ranging from 21 to 94 kDa were investigated. UV–Vis spectroscopy and atomic force microscopy (AFM) analysis were performed to investigate the morphology and structure features of thin films with different MWs. The electrical conductivity initially increased when the MW increased and then decreased at the highest MW, whereas the Seebeck coefficient had a trend of reducing as the MW grew. The maximum thermoelectric power factor (1.87 μW/mK2) was obtained for MW of 77 kDa at 333 K. At this temperature, the electrical conductivity and Seebeck coefficient of this MW were 65.5 S/m and 169 μV/K, respectively.

Authors:

Saeed Mardi, Marialilia Pea, Andrea Notargiacomo, Narges Yaghoobi Nia, Aldo Di Carlo, Andrea Reale

https://doi.org/10.3390/ma13061404

MDPI Journals - Materials, 13(6), 1404, 19/03/2020

https://www.mdpi.com/1996-1944/13/6/1404

 

 

logo University of Rome Tor Vergata
Università degli Studi di Roma
"Tor Vergata"


logo Regione Lazio

Questo sito web utilizza i cookie per capire come viene utilizzato il sito e per permettere l'accesso all'area riservata. I cookie non permettono di identificare l'utente. I cookie sono salvati sul tuo browser e sono utlizzati per personalizzare la tua esperienza sul nostro sito web. Continuando la navigazione sul nostro sito senza modificare le impostazioni, accetti il nostro utilizzo dei cookie. Comunque potrai modificare le tue impostazioni dei cookie in qualsiasi momento.